

PC-Oszilloskope, Embedded-Oszilloskope für USB

Modulare PC-Oszilloskope • Differenzielle Oszilloskope • HF, VNA • TDR/TDT • Oszilloskop-Software

Modell		PicoScope 6426E	PicoScope 6425E	PicoScope 6824E	PicoScope 6424E	PicoScope 6406E	PicoScope 6405E	PicoScope 6804E	PicoScope 6404E	PicoScope 6403E
		PQ303	PQ302	PQ198	PQ201	PQ301	PQ300	PQ197	PQ200	PQ188
Kanäle	Analog	4, BNC	4, BNC	8, BNC	4, BNC	4, BNC	4, BNC	8, BNC	4, BNC	4, BNC
	Digital	16 (2 Pod	ds, 8 Kanäle pro	MSO-Pod); ma	x. erkennbare E	ingangs-Freque	nz 500 MHz (1	Gb/s); min. erk	kennbare Pulsbr	reite 1 ns
Bandbreite		1 GHz	750 MHz	500	MHz	1 GHz	750 MHz	500	MHz	300 MHz
Auflösung		8	/10/12 bit Fle	xRes-Architektu	ır			Fest, 8 bit		
Sample-Rate	8 bit		Zwisch	en 625 MS/s ı	und 5 GS/s abh	ängig von Mode	ell und Anzahl de	er verwendeten	Kanäle	
	10 bit	Zwischen 31	2,5 MS/s und !	5 GS/s abhäng	ig von Modell	Nicht Unterstützt				
		und Anzahl der verwendeten Kanäle								
	12 bit	Bis zu 1,25 0	SS/s abhängig v	on Anzahl der v	verwendeten	Nicht Unterstützt				
			Kan	äle*						
Speicher-Tiefe		4 GS	4 GS	4 GS	4 GS	2 GS	2 GS	2 GS	2 GS	1 GS
Decoding		Viele Protokol	le, darunter 1-V	Vire, ARINC 429	9, CAN, CAN FC	, DALI, DCC, DN	/IX512, Etherne	t 10Base-T und	100Base-TX, Bi	roadR-Reach/
		Etherr	et 100Base-T1,	FlexRay, I ² C, I ² S,	LIN, Mancheste	r, PS/2, MODBL	IS, SENT, SPI, UA	RT (RS232/RS	422/RS485), U	SB 1.1
Weitere Funkt	tionen	Erweiterte T	rigger, Spektrur	n-Analysator, M	athematik-Kanä	le, automatisch	e Messungen, [DeepMeasure-F	unktion, Maske	n-Grenzwert-
					Test	, Persistenz-Mo	odus			
Signal-Generator 100 μHz50 MHz: Sinus, Rechteck; 100 μHz1 MHz: Dreieck, Re					k, Rampe-Auf/Ab, Sinc, Gauss, Halb-Sinus, außerdem DC-Spannung; weißes					
		Rauso	Rauschen, Pseudorandom-Binär-Sequenz (PRBS), AWG/Arbiträr-Signal-Generator: 14 bit, bis 200 MS/s, 40 kS Puffer							
Schnittstelle			USB 3.0	SuperSpeed (US	SB 2.0-kompatib	oel), Typ-B Ansch	nluss; Versorgui	ng über externe	s Netzteil	
Vesorgung					Externes	Netzteil, im Lief	erumfang			

^{*} Analog-Kanäle und MSO-Pods.

1 GHz, 5 GS/s Echtzeit-Oszilloskop

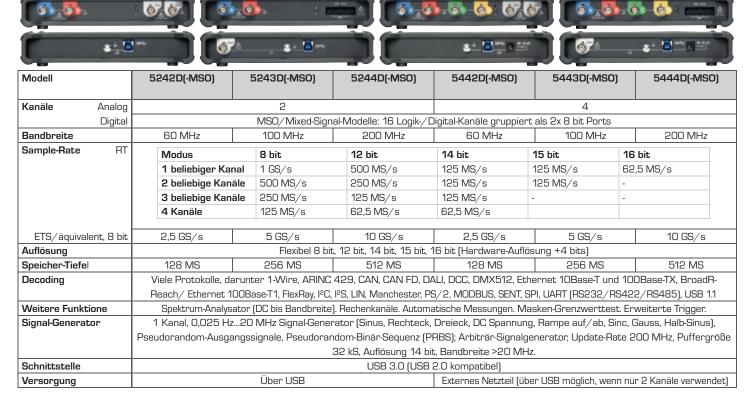
PicoScope 6000E Serie 1 GHz, bis zu 5 GS/s, flexible Auflösung 8/10/12 bit

- 4 oder 8 analoge und 16 digitale Kanäle.
- 300, 500, 750 MHz oder **1 GHz Bandbreite**, bis zu 5 GS/s Abtastrate, bis zu 4 GS tiefer Speicher.
- FlexRes-Architektur mit 8, 10 oder 12 bit Auflösung.
- 4 oder 8 analoge und 16 digitale Hochleistungskanäle (MSO/ Mixed-Signal-Oszilloskop). Präzisions-Kanäle mit geringem Rauschen.
- Tiefer Speicher, je nach Modell zwischen 1 und 4 GS.
- 300, 500, 750 MHz oder 1 GHz Bandbreite.
- Schnelle Abtastraten von bis zu 5 GS/s, abhängig von der FlexRes-Auflösung und der Anzahl der verwendeten Kanäle.
- Feste 8 bit Auflösung oder einzigartige, intelligente 8/10/12 bit FlexRes-Architektur.
- Neues Zubehör einzigartiges Sonden-Haltersystem.
- Funktions- und AWG/Arbiträr-Signal-Generator: 14 bit, Abtastrate bis 200 MS/s.
- USB 3.0 SuperSpeed.
- Unterstützt von der bewährten PicoScope 6-Software:
- Bessere Anzeigeleistung und Visualisierungs-Tools Unterstützung für die neuesten 4K-UHD-Displays.
- 21 serielle Protokoll-Decoder serienmäßig.
- Zeitbereich, Frequenzbereich, digitale Anzeige und Analyse.
- Erweiterte Auslöser, Masken-Grenztests, Alarme.

Intelligente Tastkopf-Serie A3000 passend zum PicoScope 6000E.

Die PicoScope 6000E-Serie eröffnet Ingenieuren, die die nächste Generation von Embedded-Systemen entwickeln, neue Perspektiven. In Verbindung mit der PicoScope 6 Software bietet die Serie 6000E Leistung und Funktionen zur Visualisierung, Analyse und Fehlersuche in komplexen elektronischen Designs - und das zu einem günstigen Preis! Die Serie ist auch für OEM-Anwender attraktiv, die nach hervorragenden Wellenform-Erfassungs-Funktionen und einer effektiven Programmierschnittstelle suchen. Die PicoScope 6000E sind USB 3.0 SuperSpeed PC-Mixed-Signal-Oszilloskope mit 4 oder 8 analogen und 16 digitalen Kanälen. Sie bieten eine Bandbreite von bis zu 1 GHz und eine Abtastrate von bis zu 5 GS/s, abhängig von der gewählten Auflösung und der Anzahl der verwendeten Kanäle. Je nach Modell bietet das PicoScope 6000E eine feste Auflösung von 8 bit, oder ist mit Picos einzigartiger und intelligenter FlexRes-Architektur mit Auflösungen von 8, 10 oder 12 bit ausgestattet. .Die PicoScope 6000E Serie wird von der bewährten PicoScope 6 Software mit einer Vielzahl von Funktionen unterstützt, die standardmäßig enthalten sind, wie z.B. serielles Decoding, Masken-Grenztest und vieles mehr.

Im Lieferumfang der PicoScope 6000E Serie enthalten sind 4 Tastköpfe, Netzteil-Adapter, Transport-Koffer, PicoScope 6 Software per Download von der Pico Web-Site. Als optionales Zubehör empfehlen wir: MSO Pod/Logic-Probes, weitere Analog-Probes, Probe-Halterungs-System:


PicoScope-Sondenhaltersystem

Diese Serie von Spezial-Halterungen dient zur Aufnahme von passiven 2,5-mm-Sonden. Das System ist so konzipiert, dass der Benutzer seine Hände frei hat, um das PicoScope oder andere Prüfgeräte bedienen zu können. Das System hat die folgenden Funktionen:

- Zur Verwendung mit passiven Pico 2,5-mm-Sonden.
- Ideales Zubehör für die PicoScope 6000E-Serie.
- Einzigartiges System zum festen Haltern einer Leiterplatte in Position und zur genauen Positionierung von bis zu 8 Sonden.
- "Spiegelnde" Grundplatte, die es dem Benutzer ermöglicht, die Unterseite der Leiterplatte zu betrachten und z.B. alle Status-LEDs zu sehen.
- "Schwanenhals"-Sondenhalterungen ermöglichen eine flexible Positionierung der passiven 2,5-mm-Sonden von Pico.

- Mixed-Signal-Modelle (MSO) mit Logik-Analysator an Bord.

USB PC-Oszilloskope - mehr Auflösung

PicoScope 4000,

5000, 6000 Serie USB PC-Oszilloskope

- ✓ Schnelle Oszilloskope mit tiefem Speicher; bis 500 MHz und 5 GS/s.
- ✓ Hochauflösende Oszilloskope bis 12 bit mit bis zu 8 Kanälen oder 16 bit/2 Kanäle.
- 4-Kanal echt-differenzielle Oszilloskope. Hohes Gleichtakt-Unterdrückungs-Verhältnis.

Beispiel: Hybrid- und Elektrofahrzeug (EV)-Anwendungen (Bild unten, Mitte)

Das PicoScope 4444 mit seinen 4 echt-differenziellen Kanälen ist ideal geeignet für Messungen an Hybridund Elektrofahrzeugen. Spannungs-Bereiche bis zu 1000 V (CAT III Nennspannung) ermöglichen direkte Messungen von Batterien, Wechselrichtern, Motoren und Ladegeräten. Eine Reihe von als Zubehör erhältlichen ein- und dreiphasigen Stromzangen messen sogar bis zu 2000 A. Der tiefe Speicher, die hohe Auflösung und die leistungsstarken Zoomwerkzeuge zeigen selbst verborgene Details in Wellenformen und erleichtern die Analyse und das Aufspüren von Fehlern.

Modell	4262	4224A	4424A	4824A	4444			
Kanäle Analog	2	2 4		8	4, echt-differenziell			
Bandbreite	5 MHz (4 MHz/20-mV-							
	Bereich, 3 MHz/10-mV-	201	MHz	20 MHz/ 10 MHz	20 MHz/ 10 MHz			
	Bereich)							
Sample-Rate Analog					12 bit: 400 MS/s (1			
		1/2 Kanäle	e: 80 MS/s,	14 Kanäle 80 MS/s,	Kanal), 200 MS/s (2			
	10 MS/s	3/4 Kanäle: 20	0 MS/s (4424)	58 Kanäle 40 MS/s	Kanäle), 100 MS/s (3, 4			
					Kanäle); 14 bit: 50 MS/s			
					(alle Kanal-Variationen)			
Auflösung	uflösung 16 bit		it erweitert)	12 bit	12/14 bit			
Speicher-Tiefe	16 MS	256	MS	256 MS	256 MS			
Decoding	Viele Protokolle, darunt	er 1-Wire, ARINC 429, CAI	/ire, ARINC 429, CAN, CAN FD, DALI, DCC, DMX512, Ethernet 10Base-T und 100Base-TX, BroadR-					
	Reach/ Ethernet 100Ba	ase-T1, FlexRay, I ² C, I ² S, LIN, N	Manchester, PS/2, MODBUS	, SENT, SPI, UART (RS232/R	RS422/RS485), USB 1.1			
Weitere Funktionen	Spektrum-Analysator	(DCBandbreite). Rechenka	anäle. Automatische Messu	ngen. Masken-Grenzwertte	st. Erweiterte Trigger.			
Signal-Generator	DC20 kHz	DC1	MHz	DC1 MHz				
	Sinus, Rechteck	, Dreieck, DC, Rampe, Sinc,	Gauss, Halbsinus, weißes F	Rauschen, PRBS				
					-			
Arbiträr-Puffer 4096		AWG Puffer 16 kS, 14 bit, 80 MS/s		6 kS, 14 bit, 80 MS/s AWG Puffer 16 kS, 14 bit				
	Werte, 16 bit, 192 kS/s			80 MS/s				
Schnittstelle	USB 2.0 HighSpeed		USB 3.0 S	uperSpeed				
Versorgung	Über USB		Über USB oder Netzteil					

Modell PicoScope	2204A	2205A (-MSO)	2405A	2206B (-MSO)	2406B	2207B (-MSO)	2407B	2208B (-MSO)	2408B
Kanäle Analo	g 2	2	4	2	4	2	4	2	4
Digit	al	•	MSO: 1	6 Digital-/Logik-K	anäle, gruppi	ert als 2x 8 bit Po	rts		
Bandbreite	10 MHz	25 MHz	25 MHz	50 MHz	50 MHz	70 MHz	70 MHz	100 MHz	100 MHz
Sample-Rate Analo	g 100 MS/s	200 MS/s,	500 MS/s	500 MS/s,	1 GS/s	1 GS/s	1 GS/s	1 GS/s	1 GS/s
		MSO: 500 MS/s		MSO: 1 GS/s					
Digit	al -	*	-	*	-	*	-	*	-
ETS/äquivalent, 8 b	it 2 GS/s	4 GS/s,	5 GS/s	5 GS/s,	10 GS/s	10 GS/s	10 GS/s	10 GS/s	10 GS/s
		MSO: 5 GS/s		MSO: 10 GS/s					
Auflösung 8 bit									
Speicher-Tiefe	8 kS	16 kS,	48 kS	32 MS	32 kS	64 MS	64 MS	128 MS	128 MS
		MSO: 48 kS							
Decoding	Viele Pro	tokolle, darunter 1-	Wire, ARINC 4	129, CAN, CAN FE), DALI, DCC,	DMX512, Ethern	et 10Base-T	und 100Base-TX,	BroadR-
	Reach/ I	Ethernet 100Base-T	1, FlexRay, I ² C, I	² S, LIN, Mancheste	er, PS/2, MOI	DBUS, SENT, SPI, L	IART (RS232	/RS422/RS485)	, USB 1.1
Weitere Funktionen	Spektrur	m-Analysator (DC bi	s Bandbreite).	Rechenkanäle. Au	ıtomatische	Messungen. Masl	ken-Grenzwe	rttest. Erweiterte	Trigger.
Signal-Generator		Sinus, Rechteck,	Dreieck, DC, F	Rampe, Sinc, Gauß	, Halbsinus, I	Modelle B zusätzli	ch weißes R	auschen, PRBS	
	DC100 kH	lz; AWG 1,548 MHz	Updaterate,						
	8 bit, 4 kS Puffer/32 kS Puffer für 2205A-			DC1 MHz; AWG 20 MHz Updaterate, 12 bit, 32 kS Puffer					
		MSO Variante							
Schnittstelle				USB 2.0 HighSpe	ed; Versorgu	ıng über USB			•

^{*} abhängig von der verwendeten Kanal-Zahl.

USB PC-Oszilloskope - Die "Allrounder"

PicoScope 2000 und 3000 Serie

USB PC-Oszilloskope

- ✓ USB 2.0 and 3.0 vielseitige PC-Oszilloskope mit 2 oder 4 Analog-Kanälen für Labor, Test, Service, alle Bereiche klassischer Oszilloskope.
- ✓ Bandbreiten bis 200 MHz. Sample-Raten bis 1 GS/s.
- ✓ Mixed-Signal-Modelle (MSO) mit Logik-Analysator an Bord.

Alle PicoScopes inkl. der bewährten PicoScope 6 Software für Windows, Linux, OS-X sowie SDK/Software Developer Kit für Programmierer/Entwickler. Updates kostenfrei!

Serienmäßig mit Mathematik-, Statistik-, automatischen Mess-Funktionen, Spektrum-Analyse, erweiterten Triggern, Maskentest, seriellem Bus-Decoding für viele gängige Protokolle.

Modell PicoScope		3203D(-MSO)	3403D(-MSO)	3204D(-MSO)	3404D(-MSO)	3205D(-MSO)	3405D(-MSO)	3206D(-MSO)	3406D(-MSO)	
Kanäle	Analog	2	4	2	4	2	4	2	4	
	Digital		MSO/	Mixed-Signal-Mo	delle: 16 Logik-/C	Digital-Kanäle grup	piert als 2x 8 bit	Ports		
Bandbreite		50 I	MHz	70 1	MHz	100	MHz	200	MHz	
Sample-Rate	Analog	1 GS/s (1 Kan	nal); 500 MS/s (b	is 2 Kanäle oder	MSO Digital-Port	s); 250 MS/s (bis	s 4 Kanäle oder N	/ISO Digital-Ports); 125 MS/s (4	
					Kanäle oder MS	60 Digital-Ports)				
	Digital									
ETS/äquival	ent, 8 bit	2,5 (GS/s	2,5 (GS/s	5 G	S/s	10 0	SS/s	
Auflösung					8	bit				
Speicher-Tiefe		64	MS	128	3 MS	256 MS		512	MS	
Decoding		Viele Protok	olle, darunter 1-V	/ire, ARINC 429,	CAN, CAN FD, DA	ALI, DCC, DMX512	2, Ethernet 10Bas	se-T und 100Base	e-TX, BroadR-	
		Reach/ Ethe	rnet 100Base-T1,	FlexRay, I ² C, I ² S, LI	N, Manchester, P	6/2, MODBUS, SE	NT, SPI, UART (RS	232/RS422/RS	485), USB 1.1	
Weitere Funkt	ionen	Spektrum-	Analysator (DC bis	Bandbreite). Recl	nenkanäle. Automa	atische Messunge	n. Masken-Grenzv	verttest. Erweiter	rte Trigger.	
Signal-Generator DC1 MHz. ±2 V. Sinus, Rechteck, Dreieck, DC; Rampe auf/ab, Sinc, Gauss, Halbsinus, weißes Rausch					ıschen, PRBS; AV	VG 20 MS/s,				
				12 bit, >1 MHz, Puffer: 32 kS						
Schnittstelle				·	USB 3.0 S	uperSpeed		·	·	
Versorgung		Über USB	Ext. Netzteil	Über USB	Ext. Netzteil	Über USB	Ext. Netzteil	Über USB	Ext. Netzteil	

PicoScope Software

Applikation und SDK

Kanal-Steuerung: Jeder Kanal entspricht einem PicoScope-Eingang. Die Kanalsteuerungen werden verwendet, um Sondentypen zu verwalten. Kanalnamen zuzuweisen. die vertikale Skalierung, den Offset, die Eingangskopplung und andere Signalaufbereitungsparameter einzustellen, bevor Messungen am Prüfling durchgeführt werden.

Runnung-/Stop-Steuerung: Ein Klick startet die Anzeige der Wellenformen. Klicken Sie erneut, um anzuhalten. Die gleiche Funktion hat auch die Leertaste der Tastatur.

Steuerung für Zeitbasis/Sampling: Dient zur Einstellung des Timings einer Erfassung mithilfe der Sekunden-/Division-Steuerung. Die Sampling-Steuerung bietet eine Auswahl an Zeithasis-Betriehsmodi: Pufferspeicherpriorität passt die Abtastrate an, um eine feste Erfassungsspeichertiefe beizubehalten. Abtastratenpriorität passt

die Speichertiefe an, um eine feste

Abtastrate beizubehalten

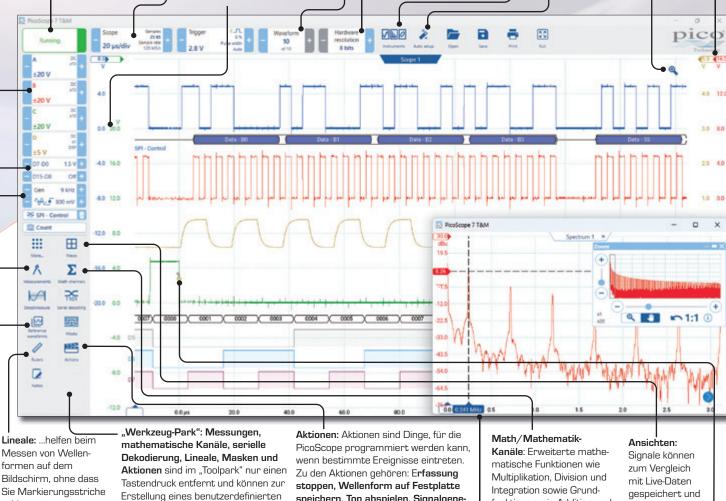
Kanal-Achse: Jeder Kanal hat eine farbcodierte Achse, die Sie zum Positionieren nach oben oder unten ziehen können.

Wellenformpuffer-Navigator:

PicoScope kann die letzten zehntausend Oszilloskop- oder Spektrum-Wellenformen in seinem Ringspeicher speichern. Der Pufferspeicher-Navigator bietet eine effiziente Möglichkeit zum Navigieren und Durchsuchen von Wellenformen und ermöglicht es Ihnen, die Zeit zurückzudrehen.

> Flexible Auflösung: Bei den PicoScope der Serien 4000, 5000 und 6000 können Sie die vertikale Hardwareauflösung auswählen.

Instrumente: Schaltet zwischen Scope-, Spektrum-, XY- und Nachleucht-Modus um.


Auto-Setup: Klicken Sie zuerst auf diese Schaltfläche, um Ihr Signal zu finden, und wählen Sie weitere Finstellungen.

Kanal-..Lineale": Ziehen Sie einen

(Linux, macOS: Beta-Versionen)

> farbigen Griff vom oberen Rand des Fensters auf den Pegel, den Sie messen möchten. Die Legende des Lineals zeigt die Messung an.

Zoom-Taste: Die gesamte Ansicht verschieben und zoomen

speichern. Ton abspielen. Signalgene-

rator auslösen, Anwendung starten.

Signal-Generator: Die meisten PicoScope PC-Oszilloskope verfügen über einen integrierten Signal-Generator. Zu den Signal-Generator-Funktionen gehören Sinus, Rechteck, Dreieck, Rampe aufwärts, Rampe abwärts, Sin(x)/x, Gauß, Halbsinus, weißes Rauschen, PRBS, Gleichspannung und AWG- (Arbiträr-) Wellenformen.

Ul-Layouts favorisiert werden.

Messungen: Klicken Sie auf diese Schaltfläche, um eine automatische Messung zur Messtabelle hinzuzufügen oder eine Messung zu löschen oder zu bearbeiten. In der Messtabelle werden dynamisch aktualisierte automatische Messungen angezeigt. Sie können aus Dutzenden von Zeit- und Frequenzbereichsmessungen wählen

Zeit-/Frequenz-Lineale: Ziehen Sie den weißen

Subtraktion.

funktionen wie Addition und

Linealgriff von links nach rechts, um einen Punkt auf der Achse zu markieren. Die Legende des Lineals zeigt die Zeit/Frequenz an iedem Lineal und die Differenz zwischen ihnen an.

aespeichert und angezeigt werden.

Trigger-Marker: Zeigt den Kanal, den Signalpegel und die Zeit des Triggerereignisses an. Zum Einstellen ziehen.

Touchscreen unterstützt:

Einfache Interaktion mit der Software über einen Touchscreen oder eine Maus.

Digitale Kanal-Steuerung: Die digitalen Kanäle der MSO-Modelle zeigen ein digitales Signal als logisch High oder Low an, je nachdem, ob die Spannung an diesem Kanal über oder unter einem festgelegten Schwellenwert liegt.

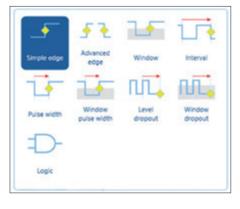
zählen müssen.

Referenz-Signale: Wellen-

angezeigt werden.

formen können zum Vergleich

mit Live-Daten gespeichert und

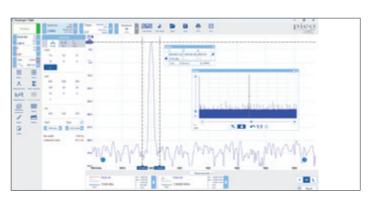

Analyse serieller Protokolle

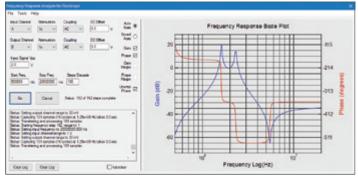
PicoScope verfügt über 30 integrierte serielle Protokolldecoder, die standardmäßig und ohne zusätzliche Kosten enthalten sind. Dazu gehören die kürzlich eingeführten Standards CAN XL, BroadR-Reach (100BASE-T1) und I3C für Anwendungen im Automobilbereich bzw. für Embedded-Systeme.

Erweiterte digitale Triggerung

PicoScopes beherrschen eine grundlegende Flankentriggerung und eine Reihe erweiterter Triggerarten, die die Erfassung komplexer Signale ermöglichen. Dadurch sind sie ideal für die Fehlersuche in Schaltungen mit Störungen,

Timing-Verletzungen, Aussetzern/Dropouts und anderen Signal-Integritäts-Problemen in analogen und digitalen Schaltungen geeignet.




Masken-Grenzwert-Prüfung

Die Masken-Grenzwert-Prüfung ermöglicht den Vergleich von "Live-" mit bekannten guten Signalen und wird für Produktions- und Debugging-Umgebungen eingesetzt. Erfassen Sie einfach ein bekanntermaßen gutes Signal, ziehen Sie eine Maske darum und prüfen Sie dann das zu prüfende System. PicoScope untersucht auf Maskenverletzungen und führt Pass/Fail-Tests durch, erfasst intermittierende Störungen und kann die Anzahl der Ausfälle und andere Statistiken im Messungsfenster anzeigen.

Die Messung von Wellenformimpulsen und -zyklen ist der Schlüssel zur Überprüfung der Leistung von elektrischen und elektronischen Geräten. DeepMeasure liefert bei jeder getriggerten Erfassung automatische Messungen von wichtigen Wellenformparametern für bis zu einer Million Wellenformzyklen. Die Ergebnisse können bequem sortiert, analysiert und mit der Wellenformanzeige korreliert werden.

Spektrum-Analysator

In der FFT-Spektrumsansicht wird die Amplitude gegen die Frequenz aufgetragen. Sie ist ideal zum Auffinden von Rauschen, Übersprechen oder Verzerrungen in Signalen. Sie können mehrere Spektrum-Ansichten neben Oszilloskop-Ansichten derselben Daten anzeigen. Die Anzeige kann um einen umfassenden Satz automatischer Messungen im Frequenzbereich ergänzt werden, darunter THD, THD+N, SNR, SINAD und IMD. FFTs mit bis zu 1 Million Punkten können in Millisekunden berechnet werden und bieten eine hervorragende Frequenzauflösung.

Software-Entwicklungskit (SDK)

Das SDK ermöglicht es Ihnen, Ihre eigene Software zu schreiben und enthält Treiber für Microsoft Windows, macOS und Linux, einschließlich Raspberry Pi und BeagleBone. Der Beispielcode zeigt, wie die Schnittstelle zu Softwarepaketen von Drittanbietern wie Microsoft Excel, NI LabVIEW, MathWorks MATLAB und Python funktioniert.

PicoScope 9400 SXRTO PC-Oszilloskope

Abtastung und hoher Analog-Bandbreite.

2 oder 4 simultane Kanäle mit je einem eigenen 12 bit/500 MS/s Wandler.

5 oder 16 GHz Analog-Bandbreite, 1 oder 2,5 TS/s Äquivalenzzeit-Abtastung.

Die PicoScope 9400 Serie ist eine neue Klasse von 2/4-Kanal Sampler-Extended Real-Time Oszilloskopen SXRTO, die die Vorteile von Echtzeit-Abtastung, Äquivalenzzeit-Abtastung und hoher Analogbandbreite kombinieren. Der Anschluss an den PC erfolgt über USB 2.0 oder Ethernet/LAN. Die Software für Windows ist im Lieferumfang enthalten. Puls-, Augen- und Maskentests bis 100 ps und 8 Gb/s. Bis zu 1 Millionen getriggerte Captures pro Sekunde. Drei Erfassungsmodi: Echtzeit, ETS und Roll-All-Capturing mit 12 bit-Auflösung in einen gemeinsamen 250-kS-Speicher.

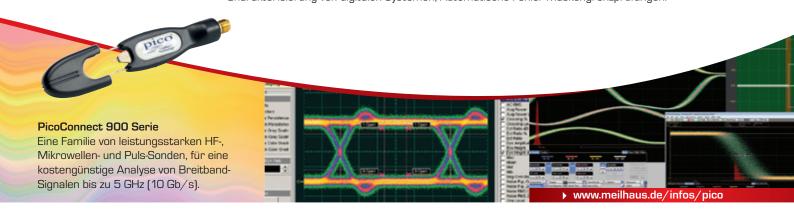
Modell PicoScope)	PicoScope 9402-05	PicoScope 9404-05	PicoScope 9402-16	PicoScope 9404-16		
Kanäle 2		2	4	2	4		
Max. Bandbreite		DC5 GHz Full/450 MHz M	iddle/ 100 MHz Narrow)	DC16 GHz Full/450 MHz M	iddle/100 MHz Narrow		
			Sampler-Extende	d Real-Time Oszilloskop/SXRTO			
Max. Sample-	RT	500 MS/s (alle K	anäle identisch ausgeführt (und simultan mit jeweils einem eigenen 1	2-bit-A/D-Wandler)		
Rate	RETS	1 TS/s (1 ps Triggerpla	tzierungsauflösung)	2,5 TS/s (0,4 ps Triggerp	latzierungsauflösung)		
Max. Speichertief	e	Echtzeit-Sampling: 50 S/Kanal bis 250 kS/Kanal für 1 Kanal, bis 125 kS/Kanal für 2 Kanäle, bis 50 kS/Kanal für 3 oder 4 Kanäle.					
		Random Equivalent-Time Sampling (RETS): Von 500 S/Kanal bis 250 kS/Kanal für 1 Kanal, bis 125 kS/Kanal für 2 Kanäle, bis					
		50 kS/Kanal für 3 oder 4 Kanäle; segmentierter Speicher					
Trigger		Quelle: Intern von beliebigem	Quelle: Intern von belie-	Intern von beliebigem der zwei Kanäle,	Quelle: Intern von beliebigem der		
		der zwei Kanäle, extern direkt	bigem der vier Kanäle	extern direkt, extern prescaled	vier Kanäle, extern prescaled		
		Betriebsarten: Freerun, No	rmal (getriggert), Single; Typ	oen: Edge/Flanke/Slope, optional Taktrückgewinnung/Clock-Recovery:			
		6,5 Mb/s	5 Gb/s	6,5 Mb/s8	3 Gb/s		
Zusatzfunktionen, Erfassungs-Arten: Echtz			S und Roll-All-Capturing mit	12 bit-Auflösung in gemeinsamen 250-k	6-Speicher. Marker, automatische		
Optionen		Messunge	en, mathematische Funktione	en, FFT, Histogramm, Augen-Diagramm, I	Masken-Test		
Schnittstellen		USB 2.0	USB 2.0; Ethernet/LAN	USB 2.0	USB 2.0; Ethernet/LAN		
Versorgung: Externes Netzteil im Lieferumfang							

SXRTO und Sampling-Oszilloskope

✓ 2- und 4-Kanal Sampling-Oszilloskope für repetitive Signale, HF, TDR/TDT. Für USB und LAN/Etherne.

- ✓ Bandbreite je nach Modell 20 oder 30 GHz Bandbreite.
- ✓ Signalgenerator-Ausgang, Pattern-Sync-Trigger und Clock-Recovery-Trigger. Augendiagramm-Messungen und Maskentests.

Sampling-Scopes, TDR/TDT



PicoScope 9300 Serie Sampling-Scopes

- 2- oder 4-Kanal, 20 oder 30 GHz.
- 15 TS/s (64 fs) sequenzielles Sampling, Display-Auflösung bis 640 TS/s (1,5 fs).
- Bis 15 GHz vorskalierter, 2,5 GHz direkter Trigger.
- Modelle mit Clock Recovery-Trigger (11,3 Gb/s).
- Alle Modelle mit Pattern Sync-Trigger.
- Alle Modelle mit Signal-Generator-Ausgang.
- Modell mit elektronischer TDR/TDT-Fähigkeit (60 ps/2,5...6 V).
- Modell mit opto-elektronischem Wandler (9,5 GHz/11,3 Gb/s).

TDR/TDT und andere Anwendungs-Bereiche

Das TDR-fähige Model kann für Anwendungen in der Time Domain Reflectometry/Zeitbereichsreflektometrie eingesetzt werden. Optional kann bei allen Modelle eine zusätzliche PG900 TDR/TDT-Quelle genutzt werden. Weitere typische Anwendungen für die PicoScope 9300 Serie sind vorbereitende Normenkonformitätsprüfungen, Charakterisierung von Schaltungsbausteinen, Telekommunikationsdienste und Fertigung, Timing-Analysen, Zeichnen und Anzeigen von Masken, serielle Hochgeschwindigkeitsbusse, Entwurf und Charakterisierung von digitalen Systemen, Automatische Fehler-Maskengrenzprüfungen.

gramm, TDR/TDT (PicoScope 9311-20); SDK

Modell	9301-20	9302-20	9311-20	9321-20	9341-20	9301-30	9341-30		
Bandbreite	20 GHz	20 GHz	20 GHz	20 GHz	20 GHz	30 GHz	30 GHz		
Kanäle	2	2	2	2	4	2	4		
USB- und LAN-Port	V V	√ √	√ √	√ √	√ √	√ √	√ √		
	USB: U	JSB 2.0 (USB 1.1 ko	mpatibel). LAN: 10/	100 Mb/s Etherne	t/LAN (RJ45); Vers	sorgung: Externes N	Vetzteil		
Clock Recovery-Trig.	-	√ (11,3 Gb/s)	-	√ (11,3 Gb/s)	-	-	-		
Pattern Sync-Trig.	✓	· · · · · · · · · · · · · · · · · · ·					✓		
Signal-Generator	✓	✓	✓	✓	✓	✓	✓		
TDR/TDT-Funktion	-	-	✓ (60 ps/2,56 V)	-	-	-	-		
Opto-elektr. Wandler	-	-	-	✓	-	-	-		
Sampling	16 bit 1 MS/s A/[0-Wandlung und 60	dB Dynamikbereich;	15 TS/s (64 fs) seq	uenzielles Sampling,	Display-Auflösung bi	s 640 TS/s (1,5 fs)		
Trigger			Bis 15 GHz vor	skalierter, 2,5 GHz (direkter Trigger				
Empfindlichkeit		1500 mV/div, 1-2-5 Sequenz							
Zeitbasis		Bereich	ne: 5 ps/Div3,2 ms	s/Div (Main, Intensi	fied, Delayed, Dual-D)elayed)			
Software	PicoSample-Soft	ware inkl. Augendiag	gramm-Analyse, Pat	tern-Sync-Trigger, M	askentest, mathem	atische Analyse, Sta	atistik, FFT, Histo-		

USB PC-Vektor-Netzwerk-Analysator

- bis 124 dB oder 118 dB Dynamik-Bereich.
 - ✓ Hohe Geschwindigkeit von >5500 Dual-Port S-Parametern pro Sekunde.

8 GHz und 6 GHz vektorielle Netzwerk Analysatoren,

✓ Erschwinglich, kompakt, portabel und robust - USB 2.0 Modular-Gerät.

PicoScope VNA

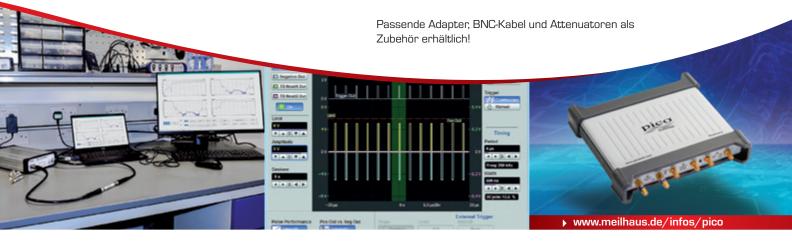
Vektor Netzwerk Analysator

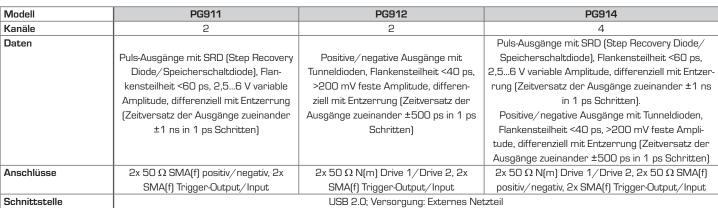
- Kostengünstige, portable Profi-Leistung.
- Bis 5500 Dual-Port S-Parameter pro Sekunde;
 >10.000 S11 + S21 pro Sekunde.
- Quad-RX Vier-Empfänger-Architektur.
- Bis 124 dB Dynamikbereich bei 10 Hz Bandbreite.
- 0,005 dB effektives Trace-Rauschen bei maximaler Bandbreite von 140 kHz.
- Kompakt, leicht, halbe Rack-Größe.
- Bezugsebenen-Offsetting und De-Embedding.
- Tabellarische und grafische Druck- und Speicher-Formate, einschließlich Touchstone.
- "Save on Trigger" für Hochgeschwindigkeits-Geräteprofiling (PicoVNA-108).
- Doppel-Frequenzmischer-Messungen mit VSWR-Korrektur (PicoVNA-108).
- P1dB, AM zu PM und eigenständige Signal-Generator-Utilities.
- Umfassende, geführte Kalibrier-Prozesse.

Modell		PicoVNA-106			PicoVNA-108			
Bandbreite		300 kHz6 GHz		300 kHz8,5 GHz				
Messbandbreite		140 kHz, 70 kHz, 35	5 kHz, 15 kHz, 10 kHz, 5	5 kHz, 1 kHz, 500 Hz, 1	00 Hz, 50 Hz, 10 Hz			
Dynamikbereich		118 dB (bei 10 Hz)			124 dB (bei 10 Hz)			
Durchschnitt-	Band Typ. Max. Band Typ.				Тур.	Max.		
lich angezeigtes	0,310 MHz	-110 dB	-100 dB	0,31 MHz	-100 dB	-90 dB		
Grundrauschen	104000 MHz	-118 dB	-108 dB	16 GHz	-124 dB	-110 dB		
	>4000 MHz	-110 dB	-100 dB	>6 GHz	-128 dB	-100 dB		
Messparameter	S11, S2	21, S22, S12; P1dB (1 o	dB Verstärkungs-Komp	ression); AM-PM-Umwa	ındlungsfaktor (PM dur	rch AM)		
	- Mischerkonversionsverlust, Rückflussdämpfung, Isolat							
		Kompression						
Interface			LISE	320				

HF Signal- und Puls-Erzeugung

PicoSource AS108 und PG900


Synthesizer, Puls-Generator


- Kompakter, portabler, preisgünstiger und agiler Profi-Synthesizer.
- ✓ Frequenzbereiche 300 kHz bis 8,192 GHz.
- ✓ USB-gesteuert per Windows-PC oder Tablet.

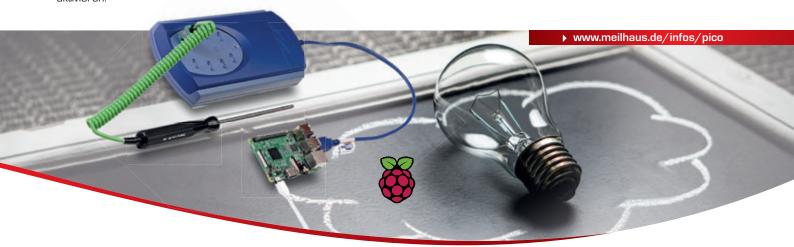
Modell		Picos	Source AS108		
Kanäle			1		
Ausgangs-Frequenz	Bereich 300 kHz8,192 GHz; Auflösun	g 300 kHz125 MHz: C),1 Hz, >125 MHz4 GHz: '	10 Hz; >4 GHz: 20 Hz; Fi	requenz-Einstellzeit auf
	±10 ppm: Ma	ax. 55 µs/typ. 50 µs; Fr	equenz-Genauigkeit (intern	e Referenz) ±5 ppm	
Ausgangs-Leistung	Bereich -15 dBm+15 dBm; Auflösung	0,1 dBm; Einstellungs-G	Genauigkeit ±1,5 dB; Ausga	ngs-Übereinstimmung (VSWR) max. 1.8:1, typ.
	1.4:1; Amplituden-Einstellzeit auf ±	:1 dB: Max. 25 µs, auf ±	±0,1 dB: Max. 200 µs; Ausç	gangs-Schutz 25 VDC Sp	oitze und 20 dBm
Phasenrauschen	(bei 10 kHz Offset) 1 GHz: Max98 dE	Bc/Hz, typ100 dBc/F	lz. 2 GHz: Max94 dBc/H	z, typ96 dBc/Hz. 4 Gł	Hz: Max88 dBc/Hz,
		typ90 dBc/Hz. 8 GH	lz: -83 dBc/Hz, typ85 dB	lc/Hz.	
Modulation	Frequenz-Bereich interne Sinus-Quelle	e: 10 Hz5 kHz; Freque	nz-Auflösung 1 Hz ±0,1% 0	Genauigkeit. Bereich AM	-Tiefe: Min. 5%, max.
	90% (für Carrier bei O dBm) und min. 5	i%, max. 50% (für Carri	er 09 dBm). FM-Abweich	iung: 2% Carrier-Freque	nz oder max. 200 kHz.
	Externer Modulations-Eingang: Bandb	reite DC-gekoppelt bis	10 kHz. Sampling 20 kS/s	mit 12 bit Auflösung. Er	npfindlichkeit (BNC(f)
		600 Ω) typ. ±	±1 V _{Spitze} . Schutz 1 V _{Spitze}		
Synchronisierungs-I/O	Parameter		Schnittstelle und Wert		Bedingung
	Interner 10-MHz-Referenz-Ausgang	BNC(f) 50 Ω	Min3 dBm	Typ. O dBm	In 50 Ω
	Externer Referenz-Eingang	BNC(f) 50 Ω	-6 dBm Empfindlichkeit	Max. 6 dBm	
	Externer Referenz-Lock-Bereich	±5 ppm			
	Trigger Eingangsspannungs-Schwelle	BNC(f) 1 kΩ	Min. 0,5 V	Max. 2,6 V	
	Trigger Ausgangs-Logikpegel	BNC(f)	Low max. 0,5 V	High min. 3,6 V	ln 1 kΩ
	0 ns				
Schnittstellen	US	3B 2.0; Versorgung: 12.	+15 VDC, 12 W (externes	s Netzteil)	

Differenzielle USB-2.0-Puls-Generatoren für TDR/TDT-Anwendungen, Halbleitertest und vieles mehr

- ✓ USB- und Ethernet-Datenlogger für verschiedene Einsatzbereiche: Thermoelemente, Pt100/1000, Spannung, Strom.
- ✓ Hohe Auflösungen, hohe Genauigkeiten.
- ✓ Einfach an den PC anschließen und messen.

Modell	TC-08 (PP222)	PT-104 (PP682)	PicoLog 1216 (PP547)
Eingänge	8	4	16 single-ended
Messgröße, Bereiche/	Temperatur : Thermoelemente J, K, T, E, R,	Temperatur PT100, PT1000, 2-, 3-,	
Sensoren	S, B, N; Bereich -270+1820°C;	4-Draht; Bereich -200+800°C. Wider-	02,5 V ; Bandbreite (-3 dB) DC70 kHz
	Spannungs-Bereich ±70 mV	stand Bereiche 0375 Ω , 010 k Ω . Span-	
		nung Bereich O115 mV, O2,5 V	
Messrate	Bis 10 Messungen pro s; Wandlungsrate		Streaming 1 kS/s pro Kanal (PicoLog),
	100 ms (Thermoelemente und CJC/	720 ms pro Kanal	100 kS/s (API), 1 MS/s (Block-Modus/
	Kaltstellen-Kompensation)		PicoScope und API), Echtzeit kontinuierlich
			mind. 1kS/s
Auflösung	20 bit, rauschfrei 16,26 bit	24 bit	12 bit
Digital-I/O	-	-	4 Ausgänge, 1 PWM-Ausgang
Anschlüsse	Mini-Thermoelement	4-pol. Mini-DIN	25-pol. Sub-D Buchse
Schnittstelle	USB 1.1	USB 2.0, Ethernet/LAN (RJ45)	USB 2.0
Versorgung	USB-versorgt	USB-versorgt/über USB-Port	USB-versorgt

Datenlogger und Mess-Systeme


Jetzt auch Raspberry-Pi-Unterstützung für PicoLog-Datenlogger!

Die Datenlogger von Pico Technology funktionieren hervorragend, wenn sie über **USB** an einen **PC** mit **Windows, MacOS** und **Linux** angeschlossen sind. Mit der **Unterstützung für Raspbian OS** auf armhf-Prozessoren können Sie die bewährten Logger jetzt auch mit Raspberry-Pi-Computern einsetzen.

Optimiert und getestet auf dem neuen Raspberry Pi 4 und den aktuellen 3B und 3B+ auf Raspbian Buster bietet das Datenlogger-Software-Paket PicoLog 6 eine visuelle, benutzerfreundliche Oberfläche, mit der Sie einfache oder komplexe Erfassungen schnell einrichten und Daten aufzeichnen, anzeigen und analysieren können. Es handelt sich um dieselbe komfortable Software, die unter Windows, MacOS und Linux läuft. In Verbindung mit einem Raspberry Pi erweitert dieses neue PicoLog 6-Paket die Flexibilität und öffnet die Tür für neue und andere Einsatzmöglichkeiten der Datenlogger von Pico:

- Sie können die Pico Datenlogger an den Pi anschließen und Tastatur, Maus und Bildschirm entfernen, um einen **preisgünstigen eigenständigen Logger** zu erhalten, der seine erfassten Daten lokal auf einer Pi SD-Karte speichert.
- Wenn Sie Ihren **Pi über WiFi oder Ethernet** anschließen, können Sie Ihren Pico-Datenlogger über das Internet aktivieren, auf den Sie dann über einen frei verfügbaren Open-Source-VNC-Server und -Viewer aus der Ferne zugreifen können.
- Wenn Sie die Power-over-Ethernet (PoE)-F\u00e4higkeit des Raspberry Pi 3B+ in Verbindung mit dem PoE PiHAT nutzen, ben\u00f6tigen Sie nicht nur keine externe Stromversorgung und keinen USB-Hub mit Stromversorgung, sondern k\u00f6nnen Ihren Logger gleichzeitig \u00fcber das Internet aktivieren

PC-Datenlogger, Mess- und Steuer-Boxen für USB und Ethernet - PicoLog PC-Datenlogger

- TC-08 für Thermoelemente J, K, T, E, R, S, B, N.
- PT-104 für PT100/1000, Kleinspannungen und Widerstand.
- <u>PicoLog 1012/1216</u> für Sensoren/Spannung bis 2,5 V (10 oder 12 bit, 12- oder 16-Kanal).
- ADC-20/24 für Spannungen bis ±2500 mV (20 oder 24 bit).
- <u>CM3</u> für 1- und 3-phasigen Wechselstrom.
- Alle Modelle mit der bewährten PicoLog Software und dem Pico Software Development Kit/SDK mit Treibern und Beispiel-Code.

Modell	ADC-20 (PP311)	ADC-24 (PP312)	CM3 (PP815)	CM3 Kit (PP803)	
Eingänge	8 se./4 differentiell	16 se./8 differentiell	3**		
Messgröße, Bereiche/					
Sensoren	Spannung, ±1250 mV,	Spannung, 7 Bereiche zwischen	O200 A, O1 VACeff, 20 Hz1	kHz Eingangs-Impedanz >1 M Ω ,	
	±2500 mV	±39 mV und ±2500 mV	AC-gekoppelt, Überspar	nnungs-Schutz ±30 VDC	
Messrate	660 ms, 430 ms, 180 ms, 100	ms, 60 ms (pro Kanal); Rausch-			
	Unterdrückung typ. 1	20 dB bei 50/60 Hz	(pro aktivem Kanal) 720 ms bis	zu s/min/h oder einigen Tagen	
Auflösung	20 bit	24 bit	24	bit	
Digital-I/O	-	4 bidirektionale I/O, 3,3 V CMOS		-	
Anschlüsse	25-polige St	ub-D Buchse	4 mm Buchsen		
Schnittstelle	USB 1.1		USB 2.0 oder Ethernet		
Versorgung	USB-ve	ersorgt	USB-versorgt, Po	wer over Ethernet	

 $^{^{\}star}$ Verfügbar auf 2 der Digital-I/O-Kanäle.

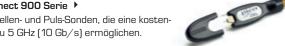
^{* *} Für 1- und 3-phasige Wechselstromanlagen.

Zubehör: Tastköpfe/Sonden, Zangen

Für PicoScopes, PicoLog und andere

◆ Passive Tastköpfe

TA375, TA386


Hochwertige, hochohmige BNC-Oszilloskop-Tastköpfe. Ein Schiebeschalter mit zwei Positionen wählt die Dämpfung 1:1 oder 10:1.

TA061, TA062

Diese niederohmigen 1,5-GHzTastköpfe mit sehr hoher Bandbreite sind für den Einsatz mit Hochgeschwindigkeits-Oszilloskopen und Spektrum-Analysatoren geeignet. Erhältlich mit SMA- oder BNC-Stecker.

PicoConnect 900 Serie ▶

Eine Familie von leistungsstarken HF-, Mikrowellen- und Puls-Sonden, die eine kostengünstige Analyse von Breitband-Signalen bis zu 5 GHz (10 Gb/s) ermöglichen.

TA133, TA150

Hochwertige, hochohmige BNC-Oszilloskop-Tastköpfe. Jeder Tastkopf wird mit einer Reihe von Zubehör-Teilen für bequeme und genaue Messungen geliefert. 10:1-Dämpfung fest. Ideal für die Verwendung mit der PicoScope

Strom-Tastköpfe/Strom-Zangen ▶

...bieten eine sichere, kostengünstige, einfache und genaue Möglichkeit, Strommessungen durchzuführen. Mit ihnen können Sie Ströme messen, ohne den Stromkreis zu unterbrechen. Stromzangen sind mit Sensoren ausgestattet, die geöffnet, um den Leiter herum platziert und sicher befestigt werden können und so eine Schleife um den Leiter bilden. Die Pico-Stromzangen können mit Pico-Oszilloskopen und Datenloggern sowie mit allen gängigen Oszilloskopen und Multimetern verschiedener Hersteller verwendet werden.

◆ Aktive, differenzielle Tastköpfe

...erweitern die Funktionalität von Oszilloskopen mit single-ended Eingängen. Sie bieten eine sichere und genaue Methode für Hochspannungs-Differenzmessungen. Zu den Anwendungen gehören sichere Messungen in der Leistungstechnik und das Erfassen von symmetrischen Differenz-Signalen mit niedriger Geschwindigkeit in seriellen Kommunikations-Bussen.

Aktive single-ended Tastköpfe

Der TETRIS-Bereich ist systemunabhängig und kann an jedes Messgerät mit einem 50-Ω-Eingang angeschlossen werden. Mit einem Eingangswiderstand von 1 M Ω und einer Eingangskapazität von nur 0,9 pF sind die TETRIS-Tastköpfe für Messungen in allen Frequenzbereichen geeignet. Im Vergleich zu passiven bieten die aktiven TETRIS-Tastköpfe eine hohe Eingangsimpedanz bis in den GHz-Bereich. Drei Sonden sind von 1 GHz bis 2,5 GHz Bandbreite verfügbar.

Weitere Tastköpfe und Sensoren

◆ Dreiachsiger Beschleunigungssensor

Der dreiachsige MEMS-Beschleunigungs-Sensor PP877 mit Oszilloskop-Schnittstelle. Er wird mit drei kurzen BNC-Kabeln geliefert, die direkt an jedes PicoScope-Oszilloskop mit drei oder mehr analogen Kanälen angeschlossen werden können. Ein hochauflösendes Oszilloskop wie die PicoScope-4000-Serie wird empfohlen, um die Vorteile der erhöhten Empfindlichkeit zu nutzen.

Attenuator-Set: BNC 50 Ω, 1 W, 1 GHz, 3, 6, 10 und 20 dB

Das TAO50 Dämpfungsset besteht aus vier koaxialen Dämpfungs-Gliedern, die für den Einsatz mit Signalen bis zu 1 GHz ausgelegt sind. Jedes Dämpfungsglied hat einen BNC-Stecker und eine BNC-

Große Auswahl an 4 mm Kabeln (Bananenstecker), Steckverbindern, Adaptern, Clips und Sonden erhältlich, auch CAT II und CAT III.

MEILHAUS ELECTRONIC GMBH Am Sonnenlicht 2 82239 Alling/Germany

+49 (0) 81 41 - 52 71-0 sales@meilhaus.de E-Mail

www.meilhaus.de